

ATL Transformation Example

Author

Éric Vépa

evepa@sodius.com

UML2 to Measure

August 30th , 2007

__

 Page 1/10

1. ATL Transformation Example: UML2 to Measure

The UML2 to Measure example describes measurement on UML2 models, using

metrics defined as ATL libraries.

1.1. Transformation Overview

The aim of this transformation is to collect measurement data on UML2 meta-models.

UML2

by URI

MOF

Measure

cT cT

example-UML2

.ecore

example-Measure

.ecore

cT cT

example

.uml

UML22Measure

.atl

UML2

Model

Handler

EMF

FLAME4UML2

.atl

MOOD4UML2

.atl

QMOOD4UML2

.atl

EMOOSE4UML2

.atl

M3

M2

M1

Figure 1: Overview of the transformation

UML2 models can be measured with ATL transformations. An UML2 model file is

loaded using the UML2 model handler, the result model is conformed to the UML2 Eclipse

Project [3] and used as the input of the transformation. The transformation input and output

meta-model handlers are UML2 and Measure. The run of the transformation UML22Measure

produces a collection of measurement data.

We obtain an output model of measures (which keeps the hierarchy of the model). The

metrics used in the transformation are implemented with ATL libraries and will be explained

in an upcoming section.

ATL Transformation Example

Author

Éric Vépa

evepa@sodius.com

UML2 to Measure

August 30th , 2007

__

 Page 2/10

2. Meta-models

2.1. UML2

The UML2 meta-model used is from the UML2 Eclipse Project [3].

2.2. Measure

The Measure meta-model is used to stored the data collected after a model

measurement.

+elementName : String

+elementType : ElementKind

MeasureSet

+KM3

+UML2

«enumeration»

ModelKind

Measure

+value : Integer

IntegerMeasure

+name : String

+desc : String

+preferredValue : String

Metric

+name : String

+desc : String

Category

+metric

1*

+parent1

+subsets

*

+owner1

+measures*

+value : Double

PercentageMeasure

+value : Double

DoubleMeasure

+metamodel

+model

+package

+interface

+class

«enumeration»

ElementKind

+modelType : ModelKind

RootMeasureSet

+root1
+mesureSets*

+root

1 +categories1..*

+category1

+metrics1..*

Figure 2: Measure meta-model

A measure model is in the following way made up: the root is a set of measure

(RootMeasureSet) which contains information on the type of measured model (modelType

among KM3 or UML2), a set of categories of metric and sets of measure for each model

element measured. A category (Category) corresponds to a metric set with a name and a

description (desc) (an acronym and its definition). A category gathers one or more metric

(Metric) also defined with a name and a description. A default predicate is also associated

(preferredValue), it is the desired values for the metric (for example ≠ 0 or > 75). A set of

measure (MeasureSet) described measurements performed on a model element

(elementName) of a given type (elementType among meta-model, model, package, interface

ATL Transformation Example

Author

Éric Vépa

evepa@sodius.com

UML2 to Measure

August 30th , 2007

__

 Page 3/10

or class). The set of measure are structured between them, for example a set of measure on a

package will contain the set of measure of the classes that this package contains. A measure

(Measure) is associated to a metric and is declined in several versions. Measures with an

integer, real or percentage value (respectively IntegerMesasure, DoubleMeasure and

PercentageMeasure).

3. Transformation from UML2 to Measure

3.1. Rules specification

These are the rules to collect measurement data from a UML2 model to a Measure

model.

 For the whole model, the following elements are created:

o A RootMeasureSet element is created with:

 A type of model measured (modelType set to #UML2).

o For each category implemented, the following elements are created:

 A Category element with :

 A name and a description.

 The created Category element is linked to the RootMeasureSet.

o For each metric implemented for a category, the following elements are

created:

 A Metric element with:

 A name and a description.

 A mandatory preferred value.

 The created Metric element is linked to a Category element.

The measure level determinates the metrics and categories that are registered.

 For each Package element, the following elements are created:

o A MeasureSet element with the name and the type of the Package element

measured.

o The created MeasureSet element is linked to the MeasureSet created for his

owner Package element.

ATL Transformation Example

Author

Éric Vépa

evepa@sodius.com

UML2 to Measure

August 30th , 2007

__

 Page 4/10

o If the Package element contains Class elements, the following elements are

created:

 An IntegerMeasure, DoubleMeasure or PercentageMeasure element,

for each Metric element created and defined for package level.

o If the Package element is a root package :

 It is linked to the RootMeasureSet.

 For each Class element, the following elements are created:

o A MeasureSet element with the name and the type of the Class element

measured.

o The created MeasureSet element is linked to the MeasureSet created for his

owner Package or Class (nested classifier) element.

o An IntegerMeasure, DoubleMeasure or PercentageMeasure element, for each

Metric element created and defined for class level.

3.2. ATL code

This ATL code for the UML22Measure transformation consists in 4 helpers and 9 rules.

The transformation uses the metrics libraries defined in section 4.

The attribute helper measureLevel is used to define the type of model elements

measured. For example, at package level (#package), only metrics defined for packages will

be used. At class level (#class), both packages and classes metrics will be used.

The two maps CategoryByName and MetricByName are used to register the categories

of metrics and the metrics implemented.

The entrypoint rule Metrics is used to fill the two previous maps, before processing

measures. The metrics and categories registered depend on the measure level.

The rule Package2MeasureSet is called if the package or class level is enabled. If the

package contains some classes, measures will be performed for the metrics defined for

package level.

The rule Class2MeasureSet is called if the class level is enabled. Measures are

performed for each metrics defined for class level.

The called rules Category, Metric and MetricWithPreferredValue are used in the

entrypoint rule to register the implemented categories and metrics with mandatory preferred

value.

The called rules IntegerMeasure, DoubleMeasure and PercentageMeasure store the

value for a metric given.

ATL Transformation Example

Author

Éric Vépa

evepa@sodius.com

UML2 to Measure

August 30th , 2007

__

 Page 5/10

4. Metrics Libraries

4.1. FLAME for UML2 Library

4.1.1. FLAME (Formal Library for Aiding Metrics Extraction)

The functions of this library are defined in OCL language in [4] and [5] for the

UML 1.3 meta-model. They have been adapted to fit with the UML2 meta-model and class

diagram models.

4.1.2. ATL code

This ATL code for the FLAME4UML2 library consists in 93 helpers.

4.2. MOOD for UML2 Library

4.2.1. MOOD (Metrics for Object-Oriented Design) and MOOD2

Name MOOD::AIF - Attributes Inheritance Factor

Informal definition Quotient between the number of inherited attributes in all classes of the

package and the number of available attributes (locally defined plus

inherited) for all classes of the current package.

Name MOOD::OIF - Operations Inheritance Factor

Informal definition Quotient between the number of inherited operations in all classes of the

package and the number of available operations (locally defined plus

inherited) for all classes of the current package.

Name MOOD::AHF - Attributes Hiding Factor

Informal definition Quotient between the sum of the invisibilities of all attributes defined in

all classes in the current package and the total number of attributes

defined in the package.

Name MOOD::OHF - Operations Hiding Factor

Informal definition Quotient between the sum of the invisibilities of all operations defined

in all classes in the current package and the total number of operations

defined in the package.

Name MOOD::BPF - Behavioral Polymorphism Factor

Informal definition Quotient between the actual number of possible different polymorphic

situations within the current package and the maximum number of

possible distinct polymorphic situations (due to inheritance).

Name MOOD::CCF - Class Coupling Factor

Informal definition Quotient between the actual number of coupled class-pairs within the

package and the maximum possible number of class-pair couplings in

the package. This coupling is the one not imputable to inheritance.

ATL Transformation Example

Author

Éric Vépa

evepa@sodius.com

UML2 to Measure

August 30th , 2007

__

 Page 6/10

Name MOOD::ICF - Internal Coupling Factor

Informal definition Quotient between the number of coupling links where both the client

and supplier classes belong to the current package and the total number

of coupling links originating in the current package.

Name MOOD2::IIF - Internal Inheritance Factor

Informal definition Quotient between the number of inheritance links where both the base

and derived classes belong to the current package and the total number

of inheritance links originating in the current package.

Name MOOD2::AHEF - Attributes Hiding Effectiveness Factor

Informal definition Quotient between the cumulative number of the package classes that do

access the package attributes and the cumulative number of the package

classes that can access the package attributes.

Name MOOD2::OHEF - Operations Hiding Effectiveness Factor

Informal definition Quotient between the cumulative number of the package classes that do

access the package operations and the cumulative number of the

package classes that can access the package operations.

4.2.2. ATL code

This ATL code for the MOOD4UML2 library consists in 10 helpers.

The implemented metrics from the MOOD and MOOD2 sets only depend on the

FLAME functions and are list above. These metrics are defined for package level.

4.3. EMOOSE for UML2 Library

4.3.1. MOOSE (Metrics for Object-Oriented Software Engineering) and EMOOSE

(Extended MOOSE)

Name MOOSE::DIT - Depth of Inheritance Tree

Informal definition The length of the longest path of inheritance from the current class to

the root of the tree.

Name MOOSE::NOC - Number Of Children

Informal definition The number of classes that inherit directly from the current class.

Name MOOSE::CBO - Coupling Between Objects

Informal definition The number of other classes that are coupled to the current one. Two

classes are coupled when references declared in one class use references

or instance variables defined by the other class.

Or used as a type or in reference by other classes.

Name MOOSE::RFC - Response for a Class

Informal definition The number of methods in the current class that might respond to a

message received by its object, including methods both inside and

outside of this class.

ATL Transformation Example

Author

Éric Vépa

evepa@sodius.com

UML2 to Measure

August 30th , 2007

__

 Page 7/10

Name EMOOSE::SIZE2

Informal definition Number of local attributes and operations defined in the class.

The metric SIZE 1 is code dependant so not adapted to our problem.

4.3.2. ATL code

This ATL code for the EMOOSE4UML2 library consists in 6 helpers.

The implemented metrics from the MOOSE and EMOOSE sets only depend on the

FLAME functions and are list above. These metrics are defined for class level.

4.4. QMOOD for UML2 Library

4.4.1. QMOOD (Quality Model for Object-Oriented Design)

Name QMOOD::DSC - Design Size in Classes

Informal definition Count of the total number of classes in the design.

Name QMOOD::NOH - Number of Hierarchies

Informal definition Count of the number of class hierarchies in the design.

Name QMOOD::NIC - Number of Independent Classes

Informal definition Count of the number of Classes that are not inherited by any Class in the

design.

Name QMOOD::NSI - Number of Single Inheritance

Informal definition Number of Classes (sub classes) that use inheritance in the design.

Name QMOOD::NNC - Number of Internal Classes

Informal definition Count of the number of internal classes defined for creating

generalization-specialization structures in class hierarchies of the

design.

Name QMOOD::NAC - Number of Abstract Classes

Informal definition Count of the number of classes that have been defined purely for

organizing information in the design.

Name QMOOD::NLC - Number of Leaf Classes

Informal definition Count of the number of leaf classes in the hierarchies of the design.

Name QMOOD::ADI - Average Depth of Inheritance

Informal definition The average depth of inheritance of classes in the design. It is computed

by dividing the summation of maximum path lengths to all classes by

the number of classes. The path length for a class is the number of edges

from the root to the class in an inheritance tree representation.

Name QMOOD::AWI - Average Width of Inheritance

Informal definition The average number of children per class in the design. The metric is

computed by dividing the summation of the number of children over all

classes by the number of classes in the design

ATL Transformation Example

Author

Éric Vépa

evepa@sodius.com

UML2 to Measure

August 30th , 2007

__

 Page 8/10

Name QMOOD::ANA - Average Number of Ancestors

Informal definition The average number of classes from which a class inherits information.

Name QMOOD::MFA - Measure of Functional Abstraction

Informal definition The ratio of the number of methods inherited by a class to the total

number of methods accessible by members in the class.

Name QMOOD::MAA - Measure of Attribute Abstraction

Informal definition The ratio of the number of attributes inherited by a class to the total

number of attributes in the class.

Name QMOOD::MAT - Measure of Abstraction

Informal definition The average of functional and attribute abstraction measures.

Name QMOOD::MOA - Measure of Aggregation

Informal definition Count of the number of data declarations whose types are user defined

classes.

Name QMOOD::MRM - Modeled Relationship Measure

Informal definition Measure of the total number of attribute and parameter based

relationships in a class.

Name QMOOD::DAM - Data Access Metric

Informal definition The ratio of the number of private attributes to the total number of

attributes declared in a class.

Name QMOOD::OAM - Operation Access Metric

Informal definition The ratio of the number of public methods to the total number of

methods declared in the class.

Name QMOOD::MAM - Member Access Metric

Informal definition This metric computes the access to all the members (attributes and

methods) of a class.

Name QMOOD::NOA - Number of Ancestors

Informal definition Counts the number of distinct classes which a class inherits.

Name QMOOD::NOM - Number of Methods

Informal definition Count of all the methods defined in a class.

Name QMOOD::CIS - Class Interface Size

Informal definition Number of public methods in a class.

Name QMOOD::NPT - Number of Unique Parameter Types

Informal definition Number of different parameter types used in the methods of the class.

Name QMOOD::NPM - Number of Parameters per Method

Informal definition Average of the number of parameters per method in the class.

Computed by summing the parameters of all methods and dividing by

the number of methods in the class.

Name QMOOD::NOD - Number of Attributes

Informal definition Number of attributes in the class.

Name QMOOD::NAD - Number of Abstract Data Types

Informal definition Number of user defined objects used as attributes in the class and which

are necessary to instantiate an object instance of the (aggregate) class.

ATL Transformation Example

Author

Éric Vépa

evepa@sodius.com

UML2 to Measure

August 30th , 2007

__

 Page 9/10

Name QMOOD::NPA - Number of Public Attributes

Informal definition Number of attributes that are declared as public in the class.

Name QMOOD::CSM - Class Size Metric

Informal definition Sum of the number of methods and attributes in the class.

Name QMOOD::CAM - Cohesion Among Methods of Class

Informal definition Computes the relatedness among methods of the class based upon the

parameter list of the methods. The metrics is computed using the

summation of the intersection of parameters of a method with the

maximum independent set of all parameter types in the class.

Name QMOOD::DCC - Direct Class Coupling

Informal definition Count of the different number of classes that a class is directly related

to. The metric includes classes that are directly related by attribute

declarations and message passing (parameters) in methods.

Name QMOOD::MCC - Maximum Class Coupling

Informal definition This metric not only includes classes that are directly related to a class

by attributes and methods, but also classes that are indirectly related

through the directly related classes.

Name QMOOD::DAC - Direct Attribute Base Coupling

Informal definition This metric is a direct count of the number of different class types that

are declared as attribute references inside a class.

Name QMOOD::DPC - Direct Parameter Based Coupling

Informal definition Number of class object types that are required directly for a message

passing (parameters) to methods in the class.

Name QMOOD::MPC - Maximum Parameter Based Coupling

Informal definition Number of Class object types that are required directly and indirectly

for message passing (parameters) in the Class.

Name QMOOD::CCD - Class Complexity Based on Data

Informal definition Computes complexity based upon the number of components

(attributes) that are defined in the class. All component declarations are

resolved to the basic primitives (integers, doubles and characters). The

metric value is a count of the number of primitives.

Name QMOOD::CCP - Class Complexity Based on Method Parameters

Informal definition Estimates complexity based upon the number of parameters required to

call methods of the Class. Inherited method parameters are also included

in the computation of the metric value.

Name QMOOD::CCM - Class Complexity Based on Members

Informal definition This metric is an aggregate of the data and method parameter

complexities.

ATL Transformation Example

Author

Éric Vépa

evepa@sodius.com

UML2 to Measure

August 30th , 2007

__

 Page 10/10

4.4.2. ATL code

This ATL code for the QMOOD4UML2 library consists in 36 helpers.

The implemented metrics from the QMOOD set only depends on the FLAME functions

and are list above. These metrics are defined both for package and class levels.

5. References

[1] ATLAS (ATLantic dAta Systems) Official Webpage: http://www.sciences.univ-

nantes.fr/lina/ATLAS/

[2] AM3 ANT Tasks: http://wiki.eclipse.org/index.php/AM3_Ant_Tasks

[3] UML2 Project Official Webpage: http://www.eclipse.org/modeling/mdt/?project=uml2

[4] Baroni, A.L.: Formal Definition of Object-Oriented Design Metrics. Master Thesis, Vrije

University, Brussel, Belgium, 2002.

[5] Baroni, A.L. and Abreu, F.B.: A Formal Library for Aiding Metrics Extraction. In: Workshop

on Object-Oriented Reengineering (ECOOP’03), Darmstadt, Germany, July 2003.

http://www.sciences.univ-nantes.fr/lina/ATLAS/
http://www.sciences.univ-nantes.fr/lina/ATLAS/
http://wiki.eclipse.org/index.php/AM3_Ant_Tasks
http://www.eclipse.org/modeling/mdt/?project=uml2

